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Abstract

A new method is presented for the simulation of three-dimensional, incompressible, free surface fluid flow problems.

The new technique, the Eulerian–Lagrangian marker and micro cell (ELMMC) method, is capable of simulating incom-

pressible fluid flow problems in Cartesian coordinates where the free surface can undergo severe deformations, includ-

ing impact with solid boundaries and impact between converging fluid fronts. The method is also capable of handling

the breakup of a fluid front from the main body of the fluid as well as their eventual coalescence. The basic solution

methodology solves the continuity and the Navier–Stokes equations with a projection scheme and is even able to incor-

porate a basic k–e turbulence modeling capability. New approaches are presented for the advection of the free surface,

as well as for the calculation of the tentative velocity, final velocity, and pressure fields. The capabilities of the new

method are demonstrated by comparing numerical results with experimental studies while the convergence of the

new method is demonstrated by spatial and temporal refinement studies.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

Modeling the free surface dynamics of an incompressible fluid represents, in and of itself, a challenging

computational problem. The problem is further complicated greatly if wave breaking and multiple fluid

bodies are involved and interactions with solid structures are present, as is the case when modeling local

tsunami dynamics, wave braking, cavity filling, jet impingement, and the like. Taking the particularly chal-
lenging problem of simulating a tsunami wave and its interactions with coastline structures underscores
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both the need for a sophisticated computing method and the lack of usefulness of methods with limited

ranges of applicability. Specifically, in order to achieve adequate levels of tsunami hazard mitigation,

one must be able to predict the effects of a large wave on realistic scenarios of coastal structures. These

types of predictions must generally be able to account for the complexities of three-dimensional terrain,

river inlets and multiple structures, to name but a few.
Significant progress has been made in numerical modeling, making it possible to simulate large waves

and estimate their destructive effects on shoreline structures. Numerical approaches used in the simulation

of tsunami waves are very complex because the flow near the runup front exhibits strong nonlinearity in

comparison to the motion away from the front, and because of wave breaking near the shore under the

influence of sea bottom and shoreline structures. In addition, tsunamis cause substantial erosion and scour-

ing of the shoreline, all of which make it necessary to solve the full physics.

The main difficulty in solving the full Navier–Stokes equations numerically is tied to the free surface

boundary. The free surface can advance, brake, and coalesce in time; thus, the algorithm that tracks it must
be quite precise and must allow for accurately imposing boundary conditions on the flow. Many methods

that track the free surface have been proposed in the past, each with characteristic advantages and disad-

vantages. The volume of fluid method, level set function, and marker and cell method are examples of pri-

mary algorithms for tracking in time the free surface over a fixed grid. The differences between algorithms

for tracking the free surface and interfacial flows have been described in significant detail by Floryan and

Rasmussen [13], and Scardovelli and Zaleski [37].

The VOF method is one of the most popular schemes for tracking the free surface boundary because of

its simplicity. In general, the VOF algorithm solves the problem of updating the volume fraction field C

over a fixed grid, given the velocity field u and the field C at the previous time level. In the simplest

VOF-methods, the interface is represented with line segments aligned with the grid lines (SLIC method

by Noh and Woodward [28]; SOLA-VOF algorithm by Hirt and Nichols [17]); the accuracy of these meth-

ods is limited. More accurate VOF methods fit the interface through piecewise linear segments, known as

the piecewise linear interface construction (PLIC), with major contributions made by Ashgriz and Poo [3],

Rider and Kothe [33], Sabau [36], Rudman [34], Gueyffier et al. [14], and He et al. [16].

The level set method was introduced by Osher and Sethian [29] as a simple and versatile method for com-

puting and analyzing the motion of an interface C in two or three spatial dimensions. The interface C may
bound a multiply connected region X and the method is capable of computing the subsequent motion of the

interface C subject to a velocity field v. Some of the important contributions to the level set method have

been made by Munford and Shah [25], Soner and Ambrosio [38], and Ruuth et al. [35].

Many algorithms have been proposed for solving incompressible, free surface, fluid flow problems based

on the marker and cell principle. Due to limitations in the free surface tracking schemes employed, the

methods developed by Nicholas and Hirt [27], Bush and Phan [6], Ramaswamy and Kawahara [32] could

only treat single-valued free surface flows. For a single-valued free surface flow approach, the location of

the free surface is a function of time and only one of the spatial coordinates.
The first numerical method capable of treating multi-valued two-dimensional clear fluid flow with a free

surface was the marker and cell (MAC) method, proposed in 1965 by Harlow and Welch [15]. They intro-

duced the use of massless markers to track the fluid motion and a novel finite difference solution for the

velocity field. Soon thereafter in 1967, Chorin [10] introduced the projection scheme for coupling the equa-

tions of motion for an incompressible fluid. Amsden and Harlow [1] subsequently improved and simplified

the MAC method and called it the SMAC method. Several modifications were made to the SMAC method

in subsequent years. Chan and Street [7] proposed the SUMMAC method that introduced the application

of the pressure boundary condition directly at the free surface and the extrapolation of velocity components
from the fluid side to obtain velocity boundary conditions. Nakayama and Romeo [26] extended the SMAC

method to solve fluid flows that were almost three-dimensional. In 1971, Viecelly [45] proposed the AB-

MAC method, a new approach for advancing simultaneous pressure and velocity in one step. A more
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recent contribution to the MAC method was made by Armenio [2] with SIMAC designed for high Reyn-

olds number free surface problems. Other important contributions include the work of Miyata and Nishim-

ura [24] who developed the TUMMAC and TUMMAC-Vbk methods (the latter being specially designed

for wave breaking problems), and the work of Unverdi and Tryggvason [44] who introduced an independ-

ent, unstructured grid to describe the interface between immiscible fluids. The method was later extended by
Juric and Tryggvason [19] to track the interface resulting from phase change. The method was further

developed for multiphase flows by Tryggvason et al. [42].

Tome and McKee [39] proposed the GENSMAC method for calculating free surface flows in two spatial

dimensions by solving the full Navier–Stokes equations with a finite difference method. Subsequently, a

three-dimensional extension of the method, GENSMAC3D, was proposed in 2001 by Tome et al. [40].

Other major contributions were made by Tsukamoto et al. [43], Kanok-Nukukchai and Tam [20], Lu

and He [23], and Popinet and Zaleski [30].

The classical approach for tracking the free surface by the use of marker and cell technique is to
establish an initial connectivity law between markers. At each time level, the distance between markers

is checked and markers are added or removed. The methodology is time consuming and the algorithm

to reconnect the marker list when the free surface breaks or coalesces is very difficult. An innovative

idea was proposed by Raad et al. [31] by the introduction of the micro cells and unconnected markers

in two spatial dimensions. The method was further developed by Chen et al. [8]. The same concept was

later used by Torres and Brackbill [41] in their point set method, which they used to extract the nor-

mal vector, the radius of curvature, and the surface from unordered data points residing on the

interface.
The new Eulerian–Lagrangian marker and micro cell (ELMMC) method [5] is based on the work of

Raad et al. [31], Chen et al. [8,9], Johnson et al. [18], and Fadda et al. [12]. In the ELMMC method, the

free surface is tracked by the use of unconnected massless, ‘‘floating’’, Lagrangian markers, named surface

markers, while the flow field is calculated in a fixed, Eulerian system discretized with rectangular compu-

tational cells. The primitive variables are defined on what is referred to as a ‘‘staggered grid’’, in which

the velocity components are defined on the cell faces and the scalar variables (i.e., pressure, velocity diver-

gence, kinetic energy, rate of dissipation) are defined on cell centers. The surface markers delineate the full

and empty parts of the computational domain and thus make it possible to accordingly flag the computa-
tional cells as full, empty, or surface. Surface cells and their neighboring full cells are subdivided into smaller

cells, named micro cells. These micro cells, in conjunction with the surface markers, make it possible to pre-

scribe free surface boundary conditions right on the free surface as opposed to at the centers of surface cells.

In addition, computation is carried out only in those cells that are flagged as full or surface. The pressure

Poisson equation is discretized by the use of a finite difference approach and solved with a preconditioned

conjugate gradient method. Global mass conservation is enforced by the use of a mass-imbalance correc-

tion scheme.
2. Methodology

In this section, we present the details of the governing equations and boundary conditions, as well as the

methodologies used for their respective solutions and implementations.

2.1. Governing equations and projection scheme

The governing equations are the Reynolds averaged Navier–Stokes and continuity equations, which

written in Cartesian tensor notation for a Newtonian fluid, appear as:
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where �ui are the time-averaged velocity components; u0iu
0
j are the Reynolds stress components; p is the fluid

pressure; q is the fluid density; m is the kinematic viscosity; and fi stands for the external forces.

The system of equations represented by (1) and (2) is solved with a projection method. The first step of

the method consists of evaluating the tentative velocity field ð~u;~v; ~wÞ from the momentum equation by set-
ting the pressure gradient equal to zero. For example, the x-component of the tentative acceleration equa-

tion appears as
o~u
ot

¼ � oð�u2 þ u0u0Þ
ox

� oð�u�vþ u0v0Þ
oy

� oð�u�wþ u0w0Þ
oz

þ mr2�uþ fx: ð3Þ
This approach represents an evaluation of the amount of momentum transferred by the fluid flow due to

inertia, turbulent kinetic energy, viscous effects, and external forces. The tentative velocity is computed
from Eq. (3) according to
~u � �uþ dt
o~u
ot

: ð4Þ
The resulting tentative velocity field does not satisfy the continuity equation. Based on the tentative velocity
field, an incompressibility deviation function, D, is computed, yielding local measures of the non-satisfac-

tion of the continuity equation for each control volume. The incompressibility deviation function is then

used as the non-homogeneous source term in the conventional Poisson pressure potential equation, from

which the pressure potential function, / � 1
q

R
p dt, is computed.

The second step in the projection scheme consists of correcting the tentative velocity field by the use of

the gradients of the pressure potential function field, such that
�u ¼ ~u� o/
ox

: ð5Þ
This final velocity field obtained after the second step satisfies both the momentum and continuity

equations.
2.2. Cell flags

In the ELMMC method, two types of cells are used. By dividing the computational domain with grid

planes, a primary type of cells is created, named ‘‘macro cells’’. These cells are used in computing the prim-

itive variables of the flow. Following a similar finer division process, a second type of cells is obtained,

named ‘‘micro cells’’. These cells are used in tracking the free surface and imposing free surface boundary

condition. In the ELMMC method, micro cells are obtained by dividing the macro cells into an odd num-

ber of parts in each spatial direction, so as to locate a micro cell at the center of a macro cell.
The macro and the micro cells carry two types of flags, namely geometric and computational flags. The

geometric flag (presented on the left side of Fig. 1) is set once at the beginning of a simulation and contains

information about the geometry of the domain and the boundary conditions. The computational flag for

each macro and micro cell (presented on the right side of Fig. 1) is set at each time level, and contains infor-

mation on the location of the fluid.



Fig. 1. Geometric and computational flags.
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2.3. Computational cycle

The computational cycle used in the ELMMC method, presented algorithmically in Fig. 2, was designed

according to the projection method. Section numbers in the blocks in Fig. 2 refer to the sections in this arti-

cle where the details are given for each algorithmic step. The first step in the ELMMCmethod is the marker

movement, followed by the computation of the tentative velocity field. Both marker movement and com-

putation of the tentative velocity field are based on information available from the previous time level. The

third step is the setting of the computational flags for micro and macro cells based on the new marker posi-
tions. For new fluid cells, we assign the external tentative velocity field based on momentum flux exchanged

between neighboring cells. The influence of pressure on the change in the velocity field has not been

accounted for until this point. Based on the tentative velocity field, the deviation from continuity for each

macro cell is calculated and the pressure potential function is computed. The tentative velocity field and the
Start Computational Cycle

Assign Tentative Surface Velocity Field § 2.3.4

Compute Pressure Potential Field § 2.3.5

Compute Final Velocity Field § 2.3.6

Compute Eddy Viscosity § 2.3.7

End Computational Cycle

Compute Tentative Velocity
Field and Time Step Size § 2.3.3 

Move Marker § 2.3.1 

Set Computational Flag for
Micro & Macro Cells § 2.3.2

Fig. 2. Computational cycle.



P.E. Raad, R. Bidoae / Journal of Computational Physics 203 (2005) 668–699 673
pressure potential function are then used to compute the internal velocity field. The external velocity field is

corrected such that the continuity equation becomes valid for most surface cells. The last step is the com-

putation of the eddy viscosity, whose values are used to calculate the Reynolds stresses that are used in the

next cycle.

2.3.1. Marker movement

The evolution of the fluid interface is accomplished by advecting the surface markers from their current

to their new locations according to
xðnþ1Þ
k ¼ xðnÞk þ �ukdt; yðnþ1Þ

k ¼ yðnÞk þ �vkdt; zðnþ1Þ
k ¼ zðnÞk þ �wkdt; ð6Þ
where (n) and (n + 1) represent the current and new time levels, respectively; k denotes the marker number;

and �uk; �vk; and �wk represent the velocity components for marker k and are calculated by a modified vol-

ume-weighting scheme. For a surface marker k, the expressions of local velocities �uk; �vk; and �wk are
�uk ¼
X8
1

V i�uibi=
X8
1

V ibi; �vk ¼
X8
1

V i�vibi=
X8
1

V ibi; �wk ¼
X8
1

V i�wibi=
X8
1

V ibi; ð7Þ
where �ui; �vi; and �wi are the final internal velocities from the preceding computational cycle; Vi are the

associated weighting volumes; and bi are binary switch coefficients (i.e., 0 or 1), used only in special
situations to ignore velocity information from outside the fluid. These situations include when the

use of velocity information from the entire surrounding would yield incorrect results for the advection

of the free surface, such as in the case of two separate fluid fronts impacting each other to be discussed

next.

As two fluid fronts approach each other (case on the left-hand side of Fig. 3), a single empty macro cell

will eventually separate them. According to the volume-weighting equation, the velocities �vi;j;k; �vi�1;j;k;
�viþ1;j;k; �vi;j�1;k; �vi�1;j�1;k; and �viþ1;j�1;k need to be used in order to calculate the advection velocities for mark-

ers A and B. However, velocities �vi;j;k and �vi;j�1;k can only be meaningful to one or the other of the two fluid
fronts. Consequently, if these values are used to advect both fluid fronts, the convergence of the two fronts

will be calculated incorrectly, resulting in both fronts slowing down.

In order to avoid this problem, the ELMMC method uses velocity information only from the internal

velocity field for advecting the free surface when different fluid fronts are in close proximity. According

to the location of the free surface, for the case presented on the left side of Fig. 3, only velocities
�vi�1;j;k and �vi�1;j�1;k are used for advecting marker A. Similarly, for advecting of marker B, only the veloc-

ities �viþ1;j;k and �viþ1;j�1;k are used.

As two fluid fronts continue to approach each other, the distance between the fronts eventually becomes
smaller than the dimension of a macro cell. It should be pointed out that in the classical marker and cell
Fig. 3. Converging fluid fronts.
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techniques, this case would not exist since the two fluid fronts would have been incorrectly ‘‘merged’’ by

now. In contrast, the ELMMC method increases the spatial accuracy by the use of the micro cells for track-

ing the interface. As long as at least one micro cell exists between the converging fluid fronts, the motion of

one front does not affect the advection of the other. The advection of the left front of the case presented on

the right-hand side of Fig. 3 is accomplished by the movement of the marker A. The computation of the
vertical movement of the marker A involves velocities �vi;j�1;k and �vi�1;j;k, but �vi;j�1;k belongs to the other fluid

front. Hence, if both velocities were used in the advection of marker A, the impact between the two fluid

fronts would be delayed. The correct advection of the left front must be computed based only on velocity
�vi�1;j;k. To eliminate �vi;j�1;k from the computation of the vertical advection of marker A, the switch coeffi-

cient, bi, associated with the velocity �vi;j�1;k is set equal to zero because neither the micro cell located on

the right side nor the one located just under marker A is full. In other words, there is no relevant fluid

information path between marker A and marker B.
2.3.2. Set computational flag for micro and macro cells

After markers are moved, the flag of each micro cell is set, based solely on the position of the markers.

The maximum distance traveled by a marker is initially limited to a distance smaller than a micro cell.

Hence, the reflagging is performed only in the cells located in the vicinity of the free surface. After the flags

of the micro cells are set, the flag of each macro cell is set based on the flags of its micro cells.

Setting the flag of micro cells is performed in two distinct stages. First, after the advection of the free

surface, if the distance between two neighboring markers is greater than an initially prescribed value, a

new marker is inserted between them. This process eliminates potential ‘‘holes’’ in the free surface. This
algorithm is time consuming (about 15% from the total CPU time) because of the unstructured distribution

of markers, but is critical to the integrity of the solution. Second, after an appropriate distribution of mark-

ers on the free surface is ensured, the flag of each micro cell is set based on the locations of the markers.

Initially, the flag of each micro cell that contains at least one marker is set to surface or wall type, depending

on its geometric flag. Then, a check is performed for each of the new micro cells that carry the surface flag,

namely if they have at least one neighboring cell of type empty. If not, then the computational flag of that

micro cell is converted to full. The term ‘‘neighbor’’ used here defines any cell that has at least one corner in

common with the cell for which a check is being performed. For three-dimensional cases, each cell has 26
neighboring cells. Also the term ‘‘direct neighbor’’ will be used later to refer to cells that have at least one

face in common with the cell in question. For three-dimensional cases, a cell has six ‘‘direct neighbor’’ cells.

A similar check is performed for the new cells of type wall, but if they do not have a neighbor of type empty,

then the number of markers inside the new cell is set to zero, and the cell type remains wall. The next check

is performed again on the new cells that carry the surface flag if they have a direct neighbor cell that carries

an empty flag. If not, then the flag of the respective micro cell is converted to the full type.

The final part of the flagging step consists of setting the computational flag for macro cells, which is a

process based only on the flags of the micro cells. Between two consecutive time levels, the maximum dis-
tance that the free surface is allowed to move is much smaller than a macro cell. Thus, as was the case for

micro cells, the reflagging procedure for macro cells is performed only for those cells located near the free

surface. The algorithm starts by checking the flag of each micro cell contained in those macro cells with a

geometrical flag of empty. If all micro cell flags are empty, then the macro cell flag is obviously set to empty.

If at least one micro cell carries a surface flag, then the macro cell flag is set to surface or premature full. The

flag is set to surface if the macro cell has at least one empty macro cell; otherwise, it is set to premature full.

If neither of the above cases is true, then the macro cell flag is set to full.

The above procedure is simplified to only two cases for those macro cells that have a geometric flag type
of wall. In this case, the flags can be set only to either empty or wall. The flag is set to wall for a macro cell

when at least one of its micro cells carries a flag of type wall.
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2.3.3. Computation of the tentative velocity field

The computation of the tentative velocity field is performed for both velocities that are within the fluid

(i.e., ‘‘internal’’) and velocities near the free surface but outside the fluid (i.e., ‘‘external’’). The internal ten-

tative velocity field is computed by the use of the Navier–Stokes equations modified by neglecting the pres-

sure term. The external tentative velocity field is estimated from the best available velocity information with
the focus being on ensuring the correct transfer of momentum. The modified Navier–Stokes equations are

approximated by the use of the finite volume technique, as opposed to the standard finite difference ap-

proach, because of the advantage that the former technique has in correctly estimating the convective

momentum flux, not only in the fluid domain but also in the free surface region. The finite difference

approach presents the potential advantage of higher order accuracy for flows with a dominant flow direc-

tion. However, for problems in which a fluid front impacts another front or a solid obstacle, any potential

gains in formal accuracy are negated by the strong likelihood of using erroneous information in the discre-

tization. This is because finite difference approximations assume that the cells are full with a continuous
homogeneous fluid.

The ELMMC method employs a complex algorithm to estimate the velocity information on each face of

the control volume. For example, if a control volume has at least one micro cell of type surface or empty,

then all connected velocities are checked to see if they belong to the same fluid front. Also, when the free

surface undergoes severe deformations, the discretized equation used in computing the momentum flux for

one cell can be significantly different from the one used in computing the momentum flux for the neighbors

of that cell.

The importance of this level of selectivity and complexity is highlighted with the aid of the example
shown in Fig. 4, where �ui;j;k is an internal velocity, located nearby the free surface but within the fluid front

on the right-hand side. If the tentative velocity ~ui;j;k is computed mechanically in the classical way, the veloc-

ities �vi;j;k; �vi;j�1;k; and �ui�1;j;k would be used. However, the latter velocity belongs to a different fluid front

(left), and the first two velocities are computed with information that is extrapolated from that left fluid

front. Thus, as was discussed in relation to the correct choice of velocities for advecting markers, if these

velocities were used in the estimation of the momentum flux, the resulting momentum flux would be wrong,

with one of the overall effects being the incorrect delaying of the impact between the two fluid fronts.

For the computation of the tentative velocity ~ui;j;k in the current method, the required velocities
�vi;j;k; �vi;j�1;k; and �ui�1;j;k are replaced with values extracted from the fluid front on the right. Based on

the shape of the free surface, the required velocity value can be extrapolated from the information in the

fluid front on the right or can be computed from the continuity equation, depending on the amount of

information available. The same algorithm is used in computing the tentative velocity ~ui�1;j;k, with the
Fig. 4. Internal velocity field near the free surface.
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exception that the information from the fluid front on the right is replaced with the velocities from the fluid

front on the left. These shifts in the velocity field are done temporarily, such that the initial velocity field

remains unchanged. Consequently, the order in which these tentative velocity components are estimated

is unimportant.

As previously noted, the appropriate transfer of momentum is the primary physical consideration in the
calculation of the tentative velocity field, which is done by the use of the Gauss theorem. Consequently, the

momentum flux leaving one control volume is automatically gained by adjacent control volume, and in this

way, momentum conservation is guaranteed. However, different procedures are used for internal as

opposed to surface velocities, where the law of momentum conservation is not necessarily respected

everywhere.

Consider the control volume for the internal velocity �ui;j;k, as presented in the top of Fig. 5. The control

volume is projected on the xy and xz planes on the bottom left- and right-hand sides, respectively. The ten-

tative velocity ~ui;j;k is computed by the use of Eq. (3). The x-momentum flux generated by convective terms
through the right face of the control volume ABCD is given by the term o�u2=ox, and is calculated with
o�u2

ox
� T right � T left

dx
; ð8Þ
where Tright and Tleft represent the rates of x-momentum transferred across the right and left faces of the
control volume, respectively. Only the calculation of the x-momentum that passes through the right face

ABCD is presented next in detail, but the approach applies to the momentum transfer through the EFGH

face.

The x-momentum Tright is computed by the use of the relation
T right ¼ max½U cv-r � Udonor; 0�; ð9Þ
Fig. 5. Control volume in the x-direction for velocity �ui;j;k .
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where Ucv-r is the average velocity in the x-direction on face ABCD and Udonor is the average velocity of the

fluid in the donor control volume. It is possible to obtain negative values for the x-momentum transferred if

velocities �ui;j;k and �uright are in opposite directions (which can occur inside the fluid or in the free surface

region because of temporary extrapolation of the velocity field). In such cases, Tright is intentionally set

equal to zero since the momentum transferred in the x-direction should always be positive. The approxi-
mation of Ucv-r is given by the equation
U cv-r ¼
�uright þ �ui;j;k

2
; ð10Þ
where the sign of Ucv-r determines the donor control volume, and thus the appropriate value for Udonor. If

Ucv-r is greater than zero, the fluid flows from the left to the right and thus the donor velocity is �ui;j;k. Oth-

erwise, the fluid flows from right to left, in which case, the donor velocity is �uright.
In the free surface region, the shape of the free surface will determine the value of �uright to be one of the

following velocities �uiþ1;j;k; �ui;j;k; �uiþ1;jþ1;k; �uiþ1;j�1;k; �uiþ1;j;kþ1; �uiþ1;j;k�1, or a combination of two or more of

them. The same statements are valid for all velocities that are used in the computation of the tentative

velocity ~ui;j;k.
Velocity computations near a solid wall represent another situation where the determination of the

x-momentum is performed in a different way. The velocity on the right face of the control volume in

Fig. 6, Ucv-r, is equal to �ui;j;k=2. If the fluid happens to be coming from the right side while fluid is washing

down the wall, �ui;j;k would be negative, and hence Udonor should be �uiþ1;j;k. But �uiþ1;j;k is equal to zero (solid

wall), and thus if the momentum flux is estimated in this straightforward manner, a wrong value would be
obtained. Instead, we move Udonor away from the wall by a quarter of a cell and we estimate the rate of

x-momentum across the right face near a solid wall by the use of the equation:
T left ¼ U cv-r � Udonor ¼
�ui;j;k
2

� �ui;j;k
4

¼
�u2i;j;k
8

: ð11Þ
Next, the rate of increase in the x-momentum as a result of the convection across faces ABEF and CDGH,

which corresponds to the term o�u�v=oy, is calculated by the use of the approximation
o�u�v
oy

� T top � T bottom

dy
; ð12Þ
where Ttop and Tbottom represent the rates of x-momentum transfer through the top and bottom faces of the

control volume, respectively. Only the calculation of x-momentum that passes through the top faces is pre-
sented next in detail.
Fig. 6. Computation of the Udonor velocity near a solid wall.
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The computation of the x-momentum through face CDGH is calculated as the sum of the x-momentum

fluxes through the two face segments CDIJ and GHIJ
T top ¼
�vtop-r � �udonor-r þ �vtop-l � �udonor-l

2
; ð13Þ
where �vtop-r and �vtop-l represent the average velocities in the y-direction along faces CDIJ and GHIJ, respec-

tively. The �udonor-r and �udonor-l represent the average velocities in the x-direction of the appropriate donor. If
�vtop-r is positive, greater than zero, the fluid is flowing from bottom to top through face BE, and the donor

control volume should be (i + 1,j,k); hence, the donor velocity is �ui;j;k. Otherwise, when the fluid flows from

top to bottom, the donor control volume is (i + 1,j + 1,k), and the donor velocity is �ui;jþ1;k.

If �vtop-r and �vtop-l have the same sign, then a similar result can be obtained by multiplying the average
vertical velocity ð�vtop-r þ �vtop-rÞ=2 with the donor velocity of the appropriate control volume. But, if
�vtop-r and �vtop-l have different signs, then the wrong value of the x-momentum would be transferred through

face BC. For example, if velocity �vtop�l is equal with ��vtop-r and Ttop is computed by the use of an average

vertical velocity, then the x-momentum transferred would be zero. However, the x-momentum transferred

through face BC in ELMMC method is zero only if the horizontal velocities �ui;j;k and �utop are equal.

Next, we calculate the rate of increase in x-momentum as a result of convection across face BCFG (and

similarly for ADEH), which is represented by the term o�u�w=oz, by the approximation
oðq�u�wÞ
oz

� T far � T near

dz
; ð14Þ
where Tfar and Tnear represent the rates of x-momentum transfer through the far and near faces of the

control volume, respectively. The calculations of Tfar and Tnear are identical to those of Ttop and Tbottom,

and are therefore not shown herein.

The viscous contribution to the x-momentum flux is estimated by the use of a modified finite difference

approach. This methodology presents the advantage of a correct evaluation of the viscous effects in the free

surface region. In the ELMMC method, the variation of the x-momentum inside the control volume is

computed with
lr2�u ¼ l
�uright � 2�ui;j;k þ �uleft

dx2
þ �utop � 2�ui;j;k þ �ubottom

dy2
þ �uin � 2�ui;j;k þ �uout

dz2

� �
; ð15Þ
where the velocities are as shown in Fig. 5. Away from the free surface region, Eq. (15) reduces to the clas-

sical central finite difference formula.

The eddy viscosity influence on the x-momentum flux is computed by the use of a modified finite differ-

ence approach. These components are estimated only when the k–e turbulence model is activated. Based on

the Kolmogorov–Prandtl concept, the Reynolds stresses are discretized as follows:
� ou0u0

ox
� 2m

�uright � 2�ui;j;k þ �uleft
dx2

� �
;

� ou0v0

oy
� m

�utop � 2�ui;j;k þ �ubottom
dy2

þ ð�vtop-r � �vtop-lÞ � ð�vbottom-r � �vbottom-lÞ
dx dy

� �
;

� ou0w0

oz
� m

�uout � 2�ui;j;k þ �uin
dz2

þ ð�wout-r � �wout-lÞ � ð�win-r � �win-lÞ
dxdz

� �
:

ð16Þ
The external forces acting on the control volume are lumped into fx, the last term on the right-hand side of

Eq. (3). In the ELMMC method, fx represents the free surface tension and the gravitational field. The grav-

itational field is integrated into the tentative velocity field and its effect is evaluated in the first step of the
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projection scheme. On the other hand, the surface tension is used to impose the free surface boundary con-

ditions for the potential pressure field [44] and is estimated in Section 2.3.5.

2.3.3.1. Time step size estimation. To optimize the CPU usage, the ELMMC method uses a variable time

step computed for each time level based on the flow dynamics. Four distinct criteria are used to establish
the time step size; namely, the maximum velocity, tentative acceleration, turbulent kinetic energy, and dis-

sipation of turbulent kinetic energy. The new time step size is evaluated according to the following

relations:
dt 6
dxmicro

um
; dt 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2m þ 2~axdx

p
� um

~ax
; ð17Þ

dt 6
1

C2e
s; dt 6 s

s�

jC2es� � C1esj
; ð18Þ
where dxmicro is the dimension of the micro cell; um is the maximum tentative velocity in the x direction; ~ax is
the maximum value of the tentative acceleration field, computed from ~ax ¼ o~u=ot; s = k/e is the character-

istic decay time; and s� ¼ k=R is the characteristic feeding time.

The conditions in Eq. (17) are deduced from the limitation on the maximum distance traveled by a mar-
ker during two consecutive time levels, which must be smaller than the dimension of a micro cell. The

inequalities in Eq. (18) are due to the k–e turbulence model and can usually decrease the size of the time

step by more than a factor of three; hence they are only computed and used when the model is activated.

All four time step inequalities, Eqs. (17) and (18), are calculated in all three directions and the most strin-

gent requirement is used to determine the step size for the next time level.
2.3.4. Tentative surface velocity field

The tentative velocity field in surface cells is assigned and not calculated from the modified Navier–
Stokes equations. Also, in order to reduce computational time, the procedure described below is performed

only in those cells where the pressure potential function is computed. The tentative surface velocity field is

required for estimating the impact pressure boundary conditions, and for computing the incompressibility

deviation. The tentative surface velocity field is not computed by the use of the continuity equation, as in

other methods. Instead, the tentative surface velocity field is assigned by the use of the best information

available such that the momentum conservation law is satisfied in all surface cells. As a result, the incom-

pressibility deviation in surface cells is not necessarily equal to zero.

Two representative cases are shown in Fig. 7, where the tentative surface velocity is being assigned.
Dashed lines represent the free surface position before its advection, and solid lines represent the actual

position of the free surface. In both cases, the tentative velocity ~vi;j;k must be assigned. The difference be-

tween the two cases presented in Fig. 7 is the state of macro cell (i,j + 1,k); which is empty in Fig. 7(a),

and surface in Fig. 7(b).

In the first case (shown in Fig. 7(a)), in which the tentative surface velocity lies between a surface and an

empty macro cell, the tentative acceleration o~vi;j�1;k=ot is the most appropriate information to use in the

computation of the tentative velocity ~vi;j;k. Therefore, the external tentative velocity ~vi;j;k is set such that
~vi;j;k ¼ �vi;j;k þ
o~vi;j�1;k

ot
; ð19Þ
where �vi;j;k is the final velocity computed in the previous time level.

In the second case presented in Fig. 7(b), the tentative surface velocity ~vi;j;k has two direct neighbors

ð~viþ1;j;k and ~vi;j�1;kÞ that are computed by the use of the simplified Navier–Stokes equations. Thus, a new
procedure was developed, based of the main flow direction, to determine which is the most appropriate



Fig. 7. Assignment of the external tentative velocity field in new fluid cells.
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value for the tentative velocity ~vi;j;k. The assignment of the tentative surface velocity is based on the direc-

tion of the flow that enters into the control volume for �vi;j;k. The direction of the flow is established by

checking the flags of the micro cells within the vi,j,k-control volume. For the vertical velocity, the micro cells

located on the left, right, near and far are examined first. If any of these is a surface or a full cell, then the

fluid must have entered into the �vi;j;k-control volume from that face. Consequently, the tentative surface

velocity ~vi;j;k is assigned to be equal with the tentative velocity value from that direction. If the fluid has

entered in the �vi;j;k-control volume from two or more directions, then the tentative surface velocity ~vi;j;k is
computed as an average of their values.

If the previously examined four micro cells are empty, then the last two faces on the top and the bottom

are investigated. As before, if any of the micro cells located on one of these faces is a surface or a full cell,

then it is understood that the flow enters in the �vi;j;k-control volume from that direction. However, if surface

cells are found on both the top and bottom faces, then the tentative velocity ~vi;j;k is set equal to the average

value of tentative velocities ~vi;jþ1;k and ~vi;j�1;k.

It is possible for all direct neighbors to be external velocities. This happens when there is a strip of thin

film of fluid extending vertically or a small droplet. In this case, there is no direct neighbor that is inside the

fluid, the only information that is available is the external forces that act on the control volume, namely the
gravitational field. Therefore, the rate of change of momentum is simply approximated from the gravita-

tional acceleration field.

2.3.5. Computation of pressure potential field

After the tentative velocity field has been computed or assigned to the entire computational domain, the

incompressibility deviation function is estimated. The Poisson equation governing the pressure potential is

discretized on the main control volume with second-order central differences
/iþ1;j;k þ /i�1;j;k

dx2
þ
/i;jþ1;k þ /i;j�1;k

dy2
þ
/i;j;kþ1 þ /i;j;k�1

dz2
� 2/i;j;k

1

dx2
þ 1

dy2
þ 1

dz2

� �
¼ D; ð20Þ
where /i + 1,j,k, /i � 1,j,k, /i,j + 1,k, /i,j � 1,k, /i,j,k + 1, /i,j,k � 1, and /i,j,k represent the pressure potential func-

tion in the right, left, top, bottom, far, in, and i,j,k macro cells, respectively; and D ¼ o~u
ox þ o~v

oy þ o~w
oz is the

incompressibility deviation function.

A macro cell in the vicinity of the free surface is presented in Fig. 8. The distance in the x-direction be-

tween the center of macro cell (i,j,k), where the pressure potential function is computed, and the free



Fig. 8. Points used in calculating the pressure potential function.
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surface, where a correct boundary condition must be applied, is not equal with dx. For this reason, Eq. (20)
is rewritten to account for unequal leg lengths
/iþ1;j;k

lrdx
þ
/i;jþ1;k

ltdy
þ
/i;j;kþ1

lodz
þ
/i�1;j;k

lldx
þ
/i;j�1;k

lbdy
þ
/i;j;k�1

lidz

� /i;j;k
1

lrdx
þ 1

lldx
þ 1

ltdy
þ 1

lbdy
þ 1

lodz
þ 1

lidz

� �
¼ D; ð21Þ
where lr, ll, lt, lb, lo and li represent the leg lengths for macro cell (i,j,k). The procedure of transforming Eq.

(20) into Eq. (21) is presented in detail in Johnson et al. [18]. In the ELMMC method, two types of pressure

boundary conditions can be imposed by the use of initial settings for an outlet region, namely, open and
continuing domain. The former boundary condition simulates an empty zone just outside the computational

domain. From a mathematical point of view, this boundary condition is obtained by setting the pressure

potential function equal to zero on the interface between the empty and the outlet macro cells.

The continuing domain pressure boundary condition is equivalent with setting the pressure potential

function gradient equal to zero, and is used to simulate an infinite channel or an open sea. Also, the

continuing domain condition is used to set the pressure boundary condition for the inlet cells.

The zero gradient condition is also used as the pressure boundary condition for wall cells. For thin walls

and for wall corners, a multi-valued external pressure potential field is used. A very thin solid wall sur-
rounded by empty macro cells is presented in Fig. 9. In order to correctly apply the zero pressure gradient
Fig. 9. Velocity boundary conditions.
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condition, the potential pressure value inside cell (i,j,k) must equal to either pi � 1,j,k, pi,j + 1,k, or pi + 1,j,k,

depending on which of these cells the boundary condition is being imposed. In the ELMMC method,

the pressure boundary conditions are imposed by modifying the leg length for each empty cell and not

by setting pressure values outside the computational domain.

The boundary condition on the free surface is set to be equal with the free surface tension. Estimation of
the free surface tension is based on the approximation that the local shape of the surface can be considered

as part of an ellipsoid. For the macro cells that intersect the free surface, the free surface tension that acts

on the control volume (i,j,k) is computed from
fx ¼ a
1

Rxoy
þ 1

Rxoz

� �
; ð22Þ
where a is the surface tension coefficient and Rxoy and Rxoz are approximations for the radii of curvature of

the free surface [4,11,21].

Computing Rxoy and Rxoz involves two steps. First, a search for all markers contained in macro cell i,j,k

is performed to determine the closest marker from the ox-axis. This would be marker A in the case shown in

Fig. 10. By projecting this marker on the ox-axis, a new point, A*, is obtained. In the second step, all mark-

ers contained in macro cell i, j, k are searched to determine the closest markers from planes xoy and xoz.
Then, the projections of these closest markers on planes xoy and xoz are calculated, retaining only the far-

thest two projected markers for each plane. Based on these points, the radii of curvature Rxoy and Rxoz are

computed in each plane considering the intersection of the free surface with each plane to be a circular arc.

Once the boundary conditions have been appropriately set, the pressure Poisson equation is solved by the

use of a highly efficient and robust preconditioned conjugate gradient method.

2.3.6. Computation of the final velocity field

The final velocity field is obtained by correcting the tentative velocity field with the potential pressure
field. In this step, the velocity type is also set based on the macro cells flag. Based on the neighbor cell flag,

the six main types of velocities are illustrated in Fig. 11.

2.3.6.1. Internal velocities. Velocities �ui�1;j�1;k and �ui�1;j;k are immersed in the fluid, and thus their flag is

named internal. However, there is a difference in the pressure correction formula used in these two cases.

The velocity �ui�1;j;k has a surface cell on its right, where the potential pressure function has not been
Fig. 10. Projection of markers in the computation of free surface tension.



Fig. 11. Final velocity types.
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calculated. On the other hand, velocity �ui�1;j�1;k is located between two full cells. The final velocity �ui�1;j�1;k is

computed according to
�ui�1;j�1;k ¼ ~ui�1;j�1;k �
/i;j�1;k � /i�1;j�1;k

dx
ð23Þ
while velocity �ui�1;j;k is calculated according to
�ui�1;j;k ¼ ~ui�1;j;k �
dtf x � /i�1;j;k

lr
ð24Þ
where fx is the free surface tension and lr is the right leg length for cell (i � 1,j,k).

2.3.6.2. Obstacle velocities. Velocity �uiþ1;j�1;k is also internal, but lies between a full and an obstacle macro

cell. Thus, the velocity flag is named obstacle and the velocity value is thus set equal to zero.

2.3.6.3. Just outside tangential velocities. All other velocities in Fig. 11 belong to the external velocity field.
A correct assignment of each external velocity is critical to accurately simulating the free surface advection

in the next time level. In previous methods, the external velocity field was partially assigned (SMMC) or

depended on cell sweeping order (MAC). However, in the ELMMCmethod the entire external velocity field

is calculated, which makes it the most elaborate step in the entire algorithm from a computational logic

point of view. The estimation of �ui;j;k can be performed in 94 distinct cases based on the information from

up to 26 neighbors and the position of the free surface. The flag name for the type of velocity represented by
�ui;j;k is just outside tangential, and is given according to the position of the velocity relative to the free surface

location.
The estimation of a just outside tangential velocity from a mathematical point of view is an extrapolation

of the internal velocity field beyond the free surface. Like any other extrapolation procedure, this step must

be performed very carefully in order not to introduce errors in the external velocity field. The problem con-

sists in the identification of the closest appropriate information from the 26 possibilities. The following

hierarchical steps accomplish the estimation of the velocity �ui;j;k.
Step 1. Two fluid fronts are depicted in Fig. 12(a), the decision of which information to use for the just

outside tangential velocity �ui;j;k is based on the flags of velocities �vi;j�1;k and �viþ1;j�1;k; at least one of which

must be internal in order to consider the velocity �ui;j�1;k a pertinent value. For the sake of this discussion,
let �viþ1;j�1;k be an internal velocity. Next, a similar check is made for velocities �ui;jþ1;k; �ui;j;kþ1; and �ui;j;k�1.



Fig. 12. First two hierarchical steps for assigning the just outside tangential velocity.
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The decision is made based on the velocity flags of ð�vi;j;k and �viþ1;j;kÞ; ð�wi;j;k and �wiþ1;j;kÞ; and

ð�wi;j;k�1 and �wiþ1;j;k�1Þ, respectively, at least one of which must be an internal velocity. If, based on the above

algorithm, more than one direct neighbor is found, then the velocity �ui;j;k is computed as an averaged value

between their values. If it was not possible to find in Step 1 a value for the velocity �ui;j;k, then Step 2 is

considered.
Step 2. For the fluid configuration shown in Fig. 12(b), the velocity �ui;j;k was not assigned at the end of

the Step 1. Now only the left and the right neighbors are checked to see if they belong to the internal veloc-

ity field. The decision to use or not to use the velocities �ui�1;j;k and=or �uiþ1;j;k is taken based on whether for

the former the right leg length of macro cell (i � 1,j,k) is greater than dx/2 and for the latter whether the left

leg length of macro cell (i + 2,j,k) is greater than dx/2. If at least one reliable neighbor is found, then the

average value is used for the just outside tangential velocity �ui;j;k. For the given configuration, the velocity
�ui;j;k lies between different fluid fronts, and its value is important only during this time level for computing

the fluid-empty velocities, such as �viþ1;j;k. If it was not possible to find a value for the velocity ui,j,k in Step 2,
then Step 3 is considered.

Step 3. In this step, the search is performed among the velocities located in the same plane as velocity
�ui;j;k, but excluding the direct neighbors. A portion from a horizontal jet is depicted in Fig. 13. Curve

AB represents the intersection between the free surface of the jet and plane yoz. The only internal velocity

is �ui;j�1;kþ1, while �ui;j�1;k; �ui;j;kþ1; and �ui;j;k are the just outside tangential velocities that must be assigned.

The only ‘‘trustworthy’’ information, for the computation of �ui;j;k, is the velocity �ui;j�1;kþ1. The decision to

use or not use this information is based on the flags of velocities �wi;j�1;k; �wiþ1;j�1;k; �vi;j;kþ1 and �viþ1;j;kþ1, at

least one of which must be internal. In addition, the other three neighbors �ui;jþ1;k�1; �ui;j�1;k�1 and �ui;jþ1;kþ1

are tested in the same way, in order to decide on the best information to extrapolate from. If, based on
Fig. 13. Third hierarchical step for assigning the just outside tangential velocity.
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the above algorithm, more than one direct neighbor is found, then the velocity is computed as an average of

their values. If it was not possible to find a value for the velocity �ui;j;k in Step 3, then Step 4 is considered.

Step 4. If the algorithm reaches this point, it means that the distance between the free surface and the

velocity location is greater than dx/2, dy/2 or dz/2. The future extrapolation for �ui;j;k repeats the above three
steps, but with less mandatory conditions. In this step, the search is for reliable information among the di-
rect neighbors. The decision to use or not a velocity is based only on its velocity flag, which must be an

internal. If more than one reliable neighbor is found, then the velocity is computed as an average of their

values. If it was not possible to find a value for velocity �ui;j;k in Step 4, then Step 5 is considered.

Step 5. In this step, the test is for neighboring velocities located in the same plane with velocity �ui;j;k, but
excluding direct neighbors and the same velocities as in Step 3 are checked. The decision to use one of veloc-

ities �ui;jþ1;kþ1; �ui;jþ1;k�1; �ui;j�1;k�1; and=or �ui;jþ1;kþ1 is based on their velocity flags, which must be internal. If

more than one reliable neighbor is found, then the velocity �ui;j;k is computed as an average. If it was not

possible to find a value for velocity �ui;j;k in Step 5, then Step 6 is considered.
Step 6. In this final step, the search is among the last 16 neighbors. The decision to use one of them is

based on their velocity flag, which must be internal. If more than one reliable neighbor is found, then the

velocity �ui;j;k is computed as an average. If it was not possible to find a value for velocity �ui;j;k in Step 6, then

its velocity flag is switched from just outside tangential to outside the fluid. Obviously, in the next compu-

tational cycle, if a velocity value is necessary for the �ui;j;k location, then a value is assigned temporarily from

the external velocity field.

2.3.6.4. Fluid-empty velocities. Fluid-empty velocities lie between a surface and an empty macro cell. Of the
velocities shown in Fig. 11, �uiþ1;j;k; �vi;j;k; and �viþ1;j;k, are of the fluid-empty type. Their values are computed

after all the just outside tangential velocities have been set. The physical concept behind the computation of

fluid-empty velocities is to satisfy the continuity equation (Eq. (2)), in surface cells, with exceptions allowed

for few special cases like for convergent fluid fronts. This stage is not a straightforward process since there

are 63 distinct cases in which the fluid-empty velocities are computed. It is worth mentioning that a major

difference exists in the computation of the fluid-empty velocities as compared to the just outside tangential

velocities. All fluid-empty velocities belonging to the same macro cell are computed simultaneously, whereas

for the just outside tangential velocities, each case is judged independently.
Based on the total number of fluid-empty velocities for a given macro cell, 63 different possibilities exist.

The fluid-empty velocity �ui;j;k, presented in Fig. 14(a), is the only one that belongs to the external velocity

field; all other velocities associated with macro cell (i,j,k) are internal velocities. In all similar cases velocity
�ui;j;k is computed by the use of the continuity equation
�ui;j;k ¼ �ui�1;j;k � ð�vi;j;k � �vi;j�1;kÞ
dx
dy

� ð�wi;j;k � �wi;j;k�1Þ
dx
dz

: ð25Þ
Fig. 14. Cell case with one velocity of type fluid-empty.
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An example on an exception is presented in Fig. 14(b), where velocity �ui;j;k is located between two converg-

ing fluid fronts. If the same relation is used to estimate �ui;j;k, a build up process would occur and in just a few

time levels the absolute value of �ui;j;k will rise dramatically. For this reason, in such cases, the value of the

velocity �ui;j;k is assigned equal to �ui�1;j;k.

Another representative example is presented in Fig. 15, where two velocities that belong to the same
macro cell possess the empty-surface flag. The first case presented in Fig. 15(a) represents a fluid front that

has just entered in the macro cell, with all velocities belonging to the external velocity field. The best infor-

mation available for velocities �ui;j;k and �vi;j;k should be �ui�1;j;k and �vi;j�1;k, respectively. Nevertheless, both of

the latter velocities are extrapolated values, and the information is thus not ‘‘trustworthy’’. In this case, it is

no longer essential to satisfy the continuity equation for this macro cell. Instead, the empty-surface veloc-

ities, �ui;j;k and �vi;j;k, are assigned equal to �ui�1;j;k and �vi;j�1;k, respectively.

In the next time level, the fluid front advances and its position could be as depicted in Fig. 15(b). The

velocity �vi;j�1;k is now residing within the internal velocity field. First, the reliable information is extrapo-
lated to �vi;j;k and then the continuity condition is used to compute �ui;j;k.

The next case depicted in Fig. 15(c) is when both velocities �ui;j;k and �vi;j;k are within the internal velocity

field. In this case, the ‘‘trustworthy’’ information is first extrapolated. Then, the deviation from continuity is

computed for this control volume. The velocities �ui;j;k and �vi;j;k are corrected so that the continuity equation

is satisfied in this macro cell
D ¼ �wi;j;k � �wi;j;k�1

2dz
;

�ui;j;k ¼ �ui;j;k � Ddx;

�vi;j;k ¼ �vi;j;k � Ddy:

ð26Þ
The last case depicted in Fig. 15(d) is that of two converging fluid fronts, where the fluid-empty velocities are

located on opposite faces of the same macro cell. This case is also resolved based on the use of the conti-

nuity equation. First, a deviation from continuity is computed, and then this value is used to correct veloc-

ities �ui;j;k and �vi;j;k
Fig. 15. Case 2: The fluid-empty velocities.
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D ¼ 1

2

�ui;j;k � �ui�1;j;k

dx
þ �vi;j;k � �vi;j�1;k

dy
þ �wi;j;k � �wi;j;k�1

dz

� �
;

�ui;j;k ¼ �ui;j;k � Ddx; �ui�1;j;k ¼ �ui�1;j;k þ Ddx: ð27Þ
The other 61 cases for fluid-empty velocities, considered in the ELMMC method, are solved with similar

approaches. The above algorithm is more complicated when three, four or five fluid-empty velocities belong

to the same macro cell.

2.3.6.5. Outside the fluid velocities. The last type of velocity depicted in Fig. 11 is represented by �ui;jþ1;k,
which lies between empty macro cells. The flag name for this velocity is outside the fluid, and its value is

set equal to zero. In the next time level, if velocity information is needed at this location, then a temporary

value is extrapolated from the internal velocity field.
2.3.7. Computation of eddy viscosity

This is the final step in the computational cycle, and is done only if the k–e turbulence model is activated

as part of a simulation. The kinetic energy equation and the dissipation of the kinetic energy equation are

discretized on the main control volume. The convective terms are approximated by the use of a control
volume approach while the other terms are approximated by a modified finite difference approach
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The discrete approximations of Eqs. (28) and (29) must minimize numerical diffusion, and reduce the stiff-

ness inherent in the production and dissipation terms. In addition, because the final velocity field is already

available, when the eddy viscosity is computed, a semi-implicit scheme (see [22]) is used for time discreti-

zation, which has the advantage of increasing the stability of the turbulent kinetic energy solution. The final
discrete forms of the k–e turbulence model equations appear as
enþ1
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1

1
dt þ C2e

en
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ð30Þ
where Ak is a generic name for all the terms in Eq. (28) that contain the turbulent kinetic energy, k; Ae is a

generic name for all the terms in Eq. (29) that contain the dissipation rate of the turbulent kinetic energy, e;
and R is a generic name for all the terms in Eqs. (28) and (29) that do not contain the turbulent kinetic

energy or the dissipation rate of the turbulent kinetic energy.

In a macro cell adjacent to a solid boundary, the local state of the turbulence is expressed in terms of the

friction velocity and computed implicitly from the logarithmic law of the wall for a smooth boundary.
Based on the resulting friction velocity, the boundary conditions for k and e are computed by the use of

the van-Driest law, which accounts for the direct viscous dissipation when the turbulence intensity is

low. For an outflow boundary, a zero gradient continuation condition is applied for k, e, and mt. For a cell

in the vicinity of the free surface, the k–emodel is applied only when the cell�s central micro cell carries a full

computational flag. In order to derive simple free surface boundary conditions for k and e, assumptions are

made that all transport processes that occur within the body of water are driven by internal shear, that the

influence of the external fluid (‘‘air’’) is neglected, and that the turbulence does not diffuse across the free
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surface interface. The practical implication of this approach is that the gradients of the turbulent quantities

die out along the local normal to the free surface.

It is important to point out that the treatment of free surface turbulence in the types of complex flows for

which the ELMMC method was envisioned is a non-trivial undertaking, and as such is beyond the scope of

this work. The intent of including the k–e model and its implementation in this work was only to demon-
strate the capability of the ELMMC framework to accommodate such physics, if and when needed.
3. Validation of the ELMMC method

The first example involves the interaction of a single, large wave with a tall structure. The animated sim-

ulation results are shown in Fig. 16 in the form of a sequence of still images of the free surface, beginning

with the initial condition at time equal zero. The experimental results for this problem were produced at the
University of Washington, Seattle (data provided by Profs. Catherine Petroff and Harry Yeh). The tank

under consideration is 1.6 m long, 0.61 m wide, and 0.75 m high. The volume of water initially contained

behind a gate is 0.4 m · 0.61 m · 0.3 m. The structure, which is 0.12 m · 0.12 m · 0.75 m, is placed 0.5 m

downstream of the gate and 0.24 m from the near sidewall of the tank. In the physical experiment, since it is

impossible to completely drain the tank downstream of the gate, a layer of water (approximately 0.01 m

deep) is present on the bottom of the tank. The domain is discretized with macro cells of dimensions

0.02 m · 0.01 m · 0.01 m, resulting in a computational domain composed of 80 · 61 · 75 cells. Surface cells

are subdivided into 27 micro cells, three in each spatial direction.
The initial condition for this problem is presented in the first frame of Fig. 16. Once the gate is removed

at time equal to zero, gravity sets the water in motion toward the structure. The center part of the water

front impacts the structure at t � 0.4 s and rides up its upstream face. Meanwhile, the sides of the wave

front wrap around the structure, rejoin in its wake, and proceed toward the downstream wall of the tank.
Fig. 16. Simulation of wave impact with a tall structure.
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A ‘‘focusing’’ effect is observed in the wake of the structure, with recirculation behavior normally indicative

of strong scouring. The mass of water rides up the downstream wall of the tank, and then comes crashing

onto the bottom of the tank. The strengths of the computational technique in dealing with impact, wave

breaking, jets, and converging fluid fronts are well highlighted by this complex flow problem. While the

simulation appears to be visually realistic, it is important to assess the accuracy of the numerical results.
Collected measurements include the time history of the net force on the structure, and the time history of

the fluid velocity at different locations. Forces were measured with a load cell mounted inside the tall struc-

ture at its bottom, and velocities were measured with a laser-Doppler velocimetery (LDV) system. The

velocity measurements were performed at three locations. The first location is at 0.146 m upstream of

the center of the structure and 0.026 m off the floor of the tank, the second location is at 0.088 m down-

stream of the center of the structure and 0.05 m off the floor of the tank, and the last location is at

0.268 m downstream of the center of the structure and 0.035 m off the floor of the tank. The validation

results for the horizontal and vertical velocities in the main flow direction are presented in Fig. 17. Data
from four independent experiments are represented in the graphs as circular symbols. For each of the three

pairs of graphs, the time origin is set to coincide with the moment at which the water first reaches the meas-

urement location considered. Specifically, the time delays between the raising of the gate and the instant

when the water first reaches the three measurement locations are 0.238, 0.5167, and 0.4512 s, respectively.

The gaps in the experimental data (e.g., 0.6 < t < 0.85 s in the top left graph of Fig. 17) are due to the

presence of bubbles in the water, which scatter the laser light and degrade the signal-to-noise ratio of the
Fig. 17. Validation with experimental data for velocity field.



Fig. 18. Validation with experimental data for the net force.
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LDV measurement system. This is a major limitation of the available experimental data. Hence, the com-

parison is restricted only to the horizontal velocity in location one and in location three. New experiments
are being performed in which LDV and PIV measurements are made through the bottom of the tank in

order to minimize the effect of laser scattering from the air bubbles on the free surface. These results

and comparisons with the numerical results for several structures shapes will be reported on elsewhere once

the new investigations have been completed. The numerical results obtained for the vertical velocity at the

second location show a chattering behavior at around t = 0.5 s. This is due to the external velocity field

where the information is extrapolated based on different logic from one step to the next. Once the point

falls inside the fluid, the oscillations cease and normal variations in the velocity field are observed.

The validation results for the net force on the structure are presented in Fig. 18. The numerical results
are drawn with a solid line and the experimental data, obtained from four independent experiments, are

plotted as circular symbols. The net numerical force is calculated by summing the forces that act on each

boundary cell along the front and back faces of the structure. The force in each boundary cell is calculated

as the product of the pressure at the center of that cell and the cell face area. The force due to the shear

stresses on the lateral faces of the structure is negligible compared to the forces on the front and back

faces. 1 The numerical results for the initial impact, which took place at around 0.38 s, coincide nicely with

the experimental data. However, an undershooting occurs at the second impact, which takes place at

around 1.35 s. The explanation for the latter discrepancy is the existence in the experiments of a large quan-
tity of air bubbles entrained in the water during the wave breaking downstream of the structure. The bub-

bles decrease the local fluid density, and in turn the impact force. The air bubble effect is unaccounted for in

the numerical simulation.

Overall, the comparisons between the experimental and numerical results for the net force and the

horizontal velocity provide strong confidence in the validity and consistency of the ELMMC method.
4. Accuracy and convergence

The accuracy of the numerical results is assessed by performing spatial and temporal convergence studies

on the method. To demonstrate the stability of the ELMMC method, a new problem is chosen, represent-

ing a spillway geometry as depicted in Fig. 19, where all dimensions are in meters. The computational do-

main is divided into two chambers by a vertical ‘‘U’’-shaped wall; the left side of the domain is the inlet

chamber and the right side is the outlet region. Initially, the computational domain is empty. The fluid
1 Even if calculated with the maximum values of velocity and surface area, the total force amounts to 0.03 N



Fig. 19. Geometry of the spillway problem.
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enters through the entire bottom of the inlet chamber with a velocity of 0.25 m/s. As the water level in the

inlet chamber rises, the water eventually flows into the outlet chamber through the spillway channel in the

middle of the vertical wall. Stationary flow is achieved when a balance is reached between the gravitational

and inertial forces along the channel. This spillway problem represents a useful verification problem of

some computational complexity. Particularly challenging to the ELMMC method should be the handling

of the jet as it goes through the outlet chamber since marker advection is based partially on the external

velocity field. All numerical computations discussed next were performed without activating the turbulence

model.
To demonstrate spatial convergence, seven incrementally finer grid resolutions were considered with

computational domains of 32 · 16 · 16, 40 · 20 · 20, 48 · 24 · 24, 64 · 32 · 32, 72 · 36 · 36,

80 · 40 · 40, and 96 · 48 · 48 grid cells. The number of grid cells increases from one simulation to the next
Table 1

Grid convergence results and associated computational costs for the spillway problem

Representative quantities Cases

32 · 16 · 16 40 · 20 · 20 48 · 24 · 24 64 · 32 · 32 72 · 36 · 36 80 · 40 · 40 96 · 48 · 48

Grid cells 8192 16,000 27,648 65,536 93,312 128,000 221,184

% – 95.3 72.8 137.0 42.4 37.2 72.8

Froude number 0.6192 0.6544 0.6641 0.6786 0.6880 0.6835 0.6825

% – 5.7 1.5 2.2 1.4 0.65 0.15

Average flow velocity (m/s) 0.7982 0.8221 0.8448 0.8539 0.8674 0.8632 0.8627

% – 2.3 2.8 1.1 1.6 0.48 0.06

Flow area (m2) 0.02032 0.01930 0.01979 0.01937 0.01944 0.01950 0.01954

% – 5.0 2.5 2.1 0.38 0.33 0.19

Water level (m) 0.20933 0.20312 0.20785 0.20557 0.20767 0.20739 0.20698

% – 2.3 2.3 1.1 1.0 0.13 0.20

Shooting point (m) 0.44015 0.44914 0.45969 0.45271 0.45471 0.45773 0.45804

% – 2.0 2.4 1.5 0.33 0.77 0.07

Number of time steps 320 365 463 570 667 825 932

% – 14.0 26.8 23.1 27.2 23.7 13.0

CPU time (s) 81.2 155.7 420.7 1011.6 1973.1 3434.7 8203.6

% – 91.8 170.3 140.3 95.0 74.1 138.8



Fig. 20. Locations and values of the representative quantities.
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by at least 37%, with the maximum relative increase of 137% taking place for grid case 64 · 32 · 32. The
overall increase in the number of cells is 2600%. The Froude number, average flow velocity and flow area

(computed along a vertical plane normal to the flow and cutting through the middle of the spillway), max-

imum water level in the inlet chamber, and maximum shooting point of the jet in the outlet chamber are

presented in Table 1 for the seven grid resolutions considered. The measurement locations and the final

position of the free surface are depicted schematically in Fig. 20. For each representative quantity, Table

1 lists both the computed value and the relative change in that quantity from the previous case. To get

a perspective on the computational efficiency of the method, it is useful to also examine the rate at which

the number of time steps required and computational time expended increase with grid resolution. These
data are listed at the bottom of Table 1, and will be discussed after the physical results are addressed.

For grid case 40 · 20 · 20, the relative increase in the total number of grid points from the base case is

95.3%. The maximum variation in the computed values (5.68%) is seen to occur for the Froude number. For

the next grid case (48 · 24 · 24), which represents an increase of 72.8% in the number of cells, the maximum

relative change (2.8%) occurs in the average flow velocity. As mentioned above, grid case 64 · 32 · 32 intro-

duces the maximum relative increase in the number of grid cells (137.04%). The maximum relative change

(2.2%) again occurs for the Froude number. The next case increases the total number of cells by 42.4% (to

93,312) and yields a maximum relative change of 1.6% in the average flow velocity. The next case
(80 · 40 · 40) yields a further reduction in the maximum relative change; namely, 0.77% for the shooting

point. The last case considered has 221,184 computational cells, which represents a relative increase of

72.8% from the penultimate case. For this final case, the maximum change in the computed values is

0.2%, and is obtained for the water level in the inlet chamber.

Collectively, the results indicate that grid convergence is achieved for all five representative physical

quantities that were tracked over the seven grid resolutions considered. Further examination of the trends

reveals that while the final levels achieved are quite small, the rate of change for a given physical quantity

does not always decrease monotonically. A fundamental reason for this behavior rests in the fact that in
Eulerian–Lagrangian methods, such as the ELMMC, the spatial and temporal resolutions are coupled.

In other words, it is not possible to decrease the grid cell size while keeping the time step fixed. Doing

so could allow a marker to travel more than the length of a micro cell, resulting in a breakdown of the
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flagging scheme. As discussed in Section 2.3.3.1, the time step is calculated dynamically at the conclusion of

each computational cycle to satisfy several criteria of maximum allowable change. Before discussing tem-

poral convergence, however, it is worthwhile to examine briefly the computational costs associated with

changes in the spatial resolution (bottom two rows of Table 1).

For consistency in the comparisons, the tabulated values were recorded over a fixed duration of one sec-
ond of physical time, starting at t = 0.2 s. The latter beginning physical time was chosen because it approx-

imately coincides with the phase in the simulation when the water jet makes contact with the bottom floor

of the outlet chamber. Selecting such an initial time avoids accounting for different initialization costs and

ensures that the number of iterations in the pressure solver remains nearly constant. Of course, the com-

putational costs associated with each pressure iteration are higher for finer grids because the matrices

are larger. Therefore, the tabulated computational costs should be viewed as comparative and not repre-

sentative of the total costs of a simulation. Overall, a 27-fold increase in the size of the grid results in only

a threefold increase in the number of pressure solver iterations, but a 100-fold increase in the computational
processing time. The relatively small increase in the number of iterations is indicative of the advantageous

convergence behavior of the Incomplete Cholesky PCG method being used to solve the pressure Poisson

equation. It is also worth pointing out the overall efficiency of the ELMMC method, whereby the compu-

tational (wall clock) costs for a second of physical simulation time are approximately only two hours even

on a 660 MHz Alpha-processor workstation.

Next, a time convergence study is presented for a chosen grid resolution case of 80 · 40 · 40 (to keep

CPU time manageable). At each time level, the time increment calculated dynamically by the ELMMC

method was divided by two, three, or four. Hence, the flow was simulated with twice, three and four time
the number of time steps that would have normally been required by the algorithm methodology. The re-

sults are summarized in Table 2. When the time step is divided by two, the maximum relative change in the

computed values (1.81%) is obtained for the Froude number. The Froude number again exhibits the max-

imum relative change (1.59%) when the time step is divided by three. For the last case, when the time step is

divided by four, the maximum relative change in the computed values (0.52%) occurs in the resulting value

for the water level in the inlet chamber. Collectively, the results indicate that temporal convergence is

achieved for all five representative physical quantities that were tracked over the four time step resolutions

considered.
Finally, based on the above results of the spatial and temporal convergence studies, it is possible to

conclude that the EMMC method exhibits good spatial and temporal convergence characteristics.

To further highlight the effectiveness and accuracy of the ELMMC method, a surface tension problem in

zero gravity is briefly considered. The method is also capable of solving inviscid problems without modi-

fications. However, these demonstrations would extend the scope of this article beyond a reasonable size.

The intent here is simply to highlight the ability of the method to handle complex boundary conditions

since problems involving surface tension can present particular convergence issues. The chosen test problem

involves a droplet of water, whose volume is 5.0 pl, that has been initially pulled along one of its axes until
Table 2

Temporal convergence results for the spillway problem

Representative quantities Dt Dt/2 Dt/3 Dt/4

Value % Change Value % Change Value % Change

Froude number 0.68253 0.67040 1.81 0.68125 1.59 0.67785 0.50

Spillway velocity 0.86277 0.85344 1.09 0.86173 0.96 0.85868 0.36

Flow area 0.01954 0.01982 1.40 0.01957 1.29 0.01962 0.29

Water level 0.20698 0.21077 1.80 0.20868 1.00 0.20978 0.52

Shooting point 0.45804 0.46321 1.12 0.46657 0.72 0.46428 0.49



Fig. 21. Simulation of severe deformations for a water droplet in zero gravity.
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its length is five times its mid-length height (i.e., diameter). This initial ‘‘cigar-shaped’’ condition is shown in
the top leftmost frame of Fig. 21 and has the initial dimensions of 62 lm in the x-direction and 12.4 lm in

each of the y- and z-directions. The final diameter of the droplet, for a perfect spherical shape, is 21.2 lm.

After 1.4 ms, the droplet approaches its final spherical shape, with dimensions of 21 lm in the x-direction

and 21.3 lm in each of the other two directions.

The time evolutions of the three main diameters of the droplet are shown in Fig. 22, where the inset plot

zooms in on the last 150 ls of this simulation. Fig. 21 presents the free surface of the droplet at nine stages

from the initial configuration (top left) until t = 0.7 ms (bottom right), when a reasonably spherical shape is

observable. During the remaining 0.7 ms of this simulation, it is not possible to visually distinguish the sur-
face plots of the sphere as the three diameters continue to converge asymptotically toward their final values.

The apparent ripples on the surface are due to the plotting approach, which involves post-processing the

surface markers into triangular patches. The search algorithm that tracks and identifies neighboring mark-

ers is very sensitive to small movements. No search was necessary for the initial condition since the posi-

tions of the markers were computed analytically, yielding a smoother plot of the free surface (not

withstanding the few ‘‘holes’’ created by missing panels). To assess the relative accuracy of the method

in converging the droplet problem to steady state, it is preferable to use an analytical metric, such as the

standard deviation of the error in the positions of the surface markers as compared with the exact spherical
condition. Since for the exact solution, the distance of each marker from the center of the sphere should be
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Fig. 22. Time evolution of the three droplet diameters.
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21.2 lm, it is possible to calculate the actual error in the ‘‘radius’’ of each surface marker. The standard

deviation of the errors in the marker radii was calculated to be 0.2821 lm, indicating that the method

predicts a final radius for the sphere of 21.2 ± 0.3 lm.
Fig. 23. Simulation of the cavity filling problem with one jet.
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5. Modeling the cavity filling problem

The last examples presented next have been chosen to highlight the capabilities of the ELMMC method

in simulating another important representative problem in free surface flows, namely cavity filling. Two dif-

ferent configurations are modeled, first that of a single jet filling a rectangular reservoir, and then second
that of two jets oriented normally to each other and filling a similar reservoir.

In the first example, the computational domain consists of a rectangular reservoir with dimensions 0.75

m · 0.75 m · 0.9 m discretized with cubical macro cells of dimension 0.03 m. The square inlet is 0.15 m on

each side, is centered along the back wall at an elevation of 0.675 m from the floor, and provides an inlet

flow with a velocity of 2 m/s. Twelve frames are presented in Fig. 23, displaying the free surface from

t = 0.009 s until t = 8.763 s, which is when the fluid level inside the cavity rises just past the top level of

the inlet. After impact with the bottom of the tank, which takes place after 0.4 s, the fluid spreads in all

directions. A second impact with the downstream wall and a runup effect take place at around 0.51 s, fol-
lowed immediately by smaller impacts with the lateral walls. The last strong impact takes place with the

upstream wall after 0.78 s, followed by a runup event that takes place on the same wall. As long as the fluid

level remains below the inlet level (t = 5.884 s), a difference in water depth exists between the downstream

and upstream walls due to the jet orientation with respect to the main fluid body. After the fluid level

reaches the inlet, the oscillations inside the tank are dampened. An interesting physical effect appears after

the inlet is totally submerged under the main fluid body, with the formation of an eddy train on each side of

the jet (t = 8.763 s).
Fig. 24. Simulation of the cavity filling problem with two jets.
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The next example adds a second jet to the previous cavity-filling problem. The animation results for this

case are again presented in the form of a sequence of still images in Fig. 24. The example is used to highlight

another strong capability of the ELMMC method, namely the simulation of fluid–fluid interactions (impact

between jets). For this problem, the computational domain consists of a cubical reservoir with dimension

0.625 m, discretized with cubical macro cells of dimension 0.025 m. The square inlets are 0.125 m on each
side, and are centered along the back walls at an elevation of 0.4 m from the floor. The inlet flow velocity

for each inlet is 1.5 m/s.

Twelve frames are presented in Fig. 24, displaying the free surface from the initial state of the problem at

t = 0 s until the fluid level inside the reservoir reaches the ceiling at t = 5.5 s. A primary impact between the

two fluid jets occurs after 0.3 s, and is followed by their coalescence in mid-air. The combined jets impact

the bottom cavity after 0.4 s. The speed of the combined jets is much smaller than in the previous simula-

tion, and the runup on the sidewalls is less pronounced. After impact, the fluid spreads in all directions, and

secondary impacts occur with lateral walls after t = 0.501 s. The impinging (combined) jets for this case
emanate from a lower elevation than the single jet in the previous example, and as a result, pierce the pool

of water nearly at its center and with a smaller velocity. As a result, the free surface undergoes smaller

deformations (t = 1.065–2.5 s). Again, the free surface ripples are dampened when the water level reaches

the top of inlet. After the water level rises above the inlet, two long eddy trains are generated by the sub-

merged jets, as can seen in the penultimate frame, t = 5.005 s.
6. Conclusions

This work presented a new numerical method for handling three-dimensional, incompressible, flows with

or without a free surface. Several examples were presented to demonstrate the capabilities of the ELMMC

method in simulating flows with severe free surface deformations, including impact with solid boundaries

and impact between converging fluid fronts. The validity and consistency of the new method were demon-

strated by comparing numerical results with those of a large experimental study. The accuracy of the

method was verified through spatial and temporal convergence studies.

The ELMMC method successfully combines the Eulerian Approach for solving the flow variables and
the Lagrangian approach for tracking the free surface interface. The use of the Lagrangian surface markers

avoids the diffusion (interface thickening) normally associated with the use of Eulerian implements to track

the interface as well as the destruction and reconstruction of the interface at each time level. Derived quan-

tities such as surface tension are easily and accurately handled by connecting markers with cubic splines.

The ELMMC method is powerful, computationally efficient, robust, and accurate. Its main disadvantage

lies primarily in the complexity of programming the various possible cases to handle the computation of the

primary variables.
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